Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Peng-Wu Zheng, ${ }^{\text {a }}{ }^{*}$ Wei Wang ${ }^{\text {b }}$ and Xue-Min Duan ${ }^{\text {a }}$

${ }^{\text {a }}$ School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang 330013, People's Republic of China, and
${ }^{\mathbf{b}}$ Department of Chemical Engineering, Anshan University of Science and Technology, Anshan 114002, People's Republic of China

Correspondence e-mail: zhengpw@sohu.com

Key indicators

Single-crystal X-ray study
$T=294 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.038$
$w R$ factor $=0.106$
Data-to-parameter ratio $=15.6$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

N, N^{\prime}-Dibenzoylpiperazine

In the title structure, $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}$, the piperazine ring adopts a chair conformation and the two phenyl rings are parallel. The molecule possesses a crystallographically imposed inversion centre. In the crystal structure, weak intermolecular C$\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds link the molecules into ribbons along the b axis.

Comment

The structural study of piperazine derivatives is of interest because some of them constitute a novel class of mixed D2/D4 receptor antagonists (Zhao et al., 2002). The N, N^{\prime}-disubstituted piperazine derivatives exhibit antifilarial, antiamoebic and spermicidal properties (Sonurlikar et al., 1977). We report here the crystal structure of the title compound, (I).

(I)

The molecule of (I) possesses a crystallographically imposed inversion centre (Fig. 1). The piperazine ring exhibits a chair conformation with the usual bond lengths and angles (Table 1) (Martínez-Martínez et al., 2004; Yogavel et al., 2003). The sum of angles around atom N 1 is 360.0°, and the $\mathrm{N} 1-\mathrm{C} 7$ bond length is 1.354 (18) \AA, in accordance with the $N s p^{2}-$

Figure 1
View of (I), showing the atom-labelling scheme and displacement ellipsoids drawn at the 30% probability level [symmetry code: (A) $1-x$, $-y, 1-z]$.

Received 21 June 2005 Accepted 30 June 2005 Online 13 July 2005

Figure 2
Hydrogen-bonded (dashed lines) ribbons of (I) in the crystal stucture.

Csp p^{2} amide character [1.355 (14) Å; Allen et al., 1987]. The two phenyl rings [C1-C6 and that related by the inversion centre $\mathrm{C}^{\mathrm{i}}-\mathrm{C} 6^{\mathrm{i}}$; symmetry code: (i) $1-x,-y, 1-z$] are parallel. In the crystal structure, weak intermolecular C $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2) form a ten-membered ring described by the graph-set descriptor $R_{2}^{2}(10)$ and link the molecules into ribbons along the b axis (Fig. 2).

Experimental

The title compound was prepared by a modified method (Lewis et al., 2003). To a solution of anhydrous piperazine ($5 \mathrm{mmol}, 0.43 \mathrm{~g}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$ was added 2.2 equivalents of triethylamine $(1.5 \mathrm{ml})$, followed by benzoyl chloride ($10 \mathrm{mmol}, 1.40 \mathrm{~g}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$. After the mixture had been stirred for 10 min , the solvent was removed using a rotary evaporator. The solid residue was washed with water and recrystallized from ethanol-cyclohexane to give a colourless solid (85% yield; m.p. 471-472 K). Crystals of (I) suitable for X-ray analysis were obtained by slow evaporation of the mother liquor.

Crystal data

$\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}$
$M_{r}=294.34$
Orthorhombic, $P b c a$
$a=7.8486(13) \AA$
$b=6.8254(12) \AA$
$c=28.771(5) \AA$
$V=1541.3(5) \AA^{3}$
$Z=4$
$D_{x}=1.268 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection
Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\text {min }}=0.930, T_{\text {max }}=0.983$
7944 measured reflections

Mo $K \alpha$ radiation

Cell parameters from 2532 reflections
$\theta=2.8-26.4^{\circ}$
$\mu=0.08 \mathrm{~mm}^{-1}$
$T=294$ (2) K
Block, colourless
$0.26 \times 0.24 \times 0.20 \mathrm{~mm}$

1580 independent reflections 1168 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.037$
$\theta_{\text {max }}=26.4^{\circ}$
$h=-9 \rightarrow 5$
$k=-8 \rightarrow 8$
$l=-35 \rightarrow 35$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0513 P)^{2}\right. \\
& +0.3539 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.004 \\
& \Delta \rho_{\max }=0.17 \mathrm{e}_{\mathrm{\circ}} \AA^{-3} \\
& \Delta \rho_{\min }=-0.14 \mathrm{e} \mathrm{~A}^{-3} \\
& \text { Extinction correction: SHELXL } \\
& \text { Extinction coefficient: } 0.060 \text { (4) }
\end{aligned}
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038$
$w R\left(F^{2}\right)=0.106$
$S=1.02$
1580 reflections
101 parameters
H-atom parameters constrained

Table 1
Selected geometric parameters ($\mathrm{A},{ }^{\circ}$).

$\mathrm{O} 1-\mathrm{C} 7$	$1.2284(18)$	$\mathrm{N} 1-\mathrm{C} 9$	$1.4629(17)$
$\mathrm{N} 1-\mathrm{C} 7$	$1.3539(18)$	$\mathrm{C} 8-\mathrm{C} 9^{\mathrm{i}}$	$1.511(2)$
$\mathrm{N} 1-\mathrm{C} 8$	$1.4619(17)$		
			$122.27(13)$
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 8$	$120.56(12)$	$\mathrm{O} 1-\mathrm{C} 7-\mathrm{N} 1$	$119.23(13)$
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 9$	$125.98(12)$	$\mathrm{O} 1-\mathrm{C} 7-\mathrm{C} 6$	$118.45(12)$
$\mathrm{C} 8-\mathrm{N} 1-\mathrm{C} 9$	$113.43(11)$	$\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 6$	
			$167.75(12)$
$\mathrm{C} 8-\mathrm{N} 1-\mathrm{C} 7-\mathrm{O} 1$	$-9.7(2)$	$\mathrm{C} 8-\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 6$	$-10.1(2)$
$\mathrm{C} 9-\mathrm{N} 1-\mathrm{C} 7-\mathrm{O} 1$	$172.45(14)$	$\mathrm{C} 9-\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 6$	

Symmetry code: (i) $-x+1,-y,-z+1$.

Table 2
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 8-\mathrm{H} 8 A \cdots \mathrm{O}^{\text {ii }}$	0.97	2.48	$3.253(3)$	137
Symmetry codes (ii) $-x+1,-y+1,-z+1$.				

All H atoms were positioned geometrically and refined as riding, with $\mathrm{C}-\mathrm{H}=0.93-0.97 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

The authors gratefully acknowledge financial support from the Foundation for Excellent Young Teachers of Jiangxi Science and Technology Normal University.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Bruker (1997). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Lewis, F., Long, T. M., Stern, C. L. \& Liu, W. Z. (2003). J. Phys. Chem. A, 107, 3254-3262.
Martínez-Martínez, F. J., Rojas-Pérez, R. E., García-Báez, E. V., Höpfl, H. \& Padilla-Martínez, I. I. (2004). Acta Cryst. C60, o699-o701.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sonurlikar, U. A., Shanker, B., Kirke, P. A. \& Bhide, M. B. (1977). Bull. Haffkine, 5, 95-96.
Yogavel, M., Selvanayagam, S., Velmurugan, D., Shanmuga Sundara Raj, S., Fun, H.-K., Marappan, M. \& Kandaswamy, M. (2003). Acta Cryst. E59, o83o85.
Zhao, H., He, X., Thurkauf, A., Hoffman, D., Kieltyka, A., Brodbeck, R., Primus, R. \& Wasley, J. W. (2002). Bioorg. Med. Chem. Lett. 12, 3111-3115.

